Resultado da Busca
XAI implements specific techniques and methods to ensure that each decision made during the ML process can be traced and explained. AI, on the other hand, often arrives at a result using an ML algorithm, but the architects of the AI systems do not fully understand how the algorithm reached that result.
A XAI implementa técnicas e métodos específicos para garantir que cada decisão tomada durante o processo de ML possa ser rastreada e explicada. A IA, por outro lado, muitas vezes chega a um resultado usando um algoritmo de ML, mas os arquitetos dos sistemas de IA não entendem completamente como o algoritmo chegou a esse resultado.
xai는 머신 러닝 프로세스 중에 내린 각 결정을 추적하고 설명하기 위한 특정 기술과 방법을 구현합니다. 반면, AI는 종종 머신 러닝 알고리즘을 사용하여 결과에 도달하지만, AI 시스템 설계자는 이러한 알고리즘이 어떻게 결과에 도달했는지 완전히 이해하지 못합니다.
The easiest way to think about AI, machine learning, deep learning and neural networks is to think of them as a series of AI systems from largest to smallest, each encompassing the next.
³ "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI (Inteligencia artificial explicable (XAI): conceptos, taxonomías, oportunidades y desafíos hacia la IA responsable)" (enlace externo a ibm.com), ScienceDirect, junio de 2020.
XAI の追跡性技術の一例が DeepLIFE(ディープラーニングの重要機能)で、これはニューロンごとの活性化を該当する参照ニューロンと照らし合わせて、活性化されたニューロン間の追跡リンクを表示し、ニューロン間の依存関係までも表示します。
比较 ai 和 xai “常规”ai 和可解释 ai 之间究竟有什么区别?xai 采用了特定的技术和方法,以确保可以跟踪和解释在 ml 过程中所做出的每个决策。另一方面,ai 通常利用 ml 算法得出结果,但 ai 系统的架构师并不完全了解算法是如何得出该结果的。
Explore IBM's watsonx.ai for cutting-edge generative AI and machine learning capabilities in our innovative studio.
Membandingkan AI dan XAI Apa sebenarnya perbedaan antara AI “biasa” dan AI yang dapat dijelaskan? XAI menerapkan teknik dan metode khusus untuk memastikan bahwa setiap keputusan yang diambil selama proses ML dapat dilacak dan dijelaskan.Sebaliknya, AI sering kali mendapatkan hasil menggunakan algoritme ML, namun arsitek sistem AI tidak sepenuhnya memahami bagaimana algoritme mencapai hasil ...
如何看待机器(深度)学习可解释方法(xai)的现状与未来? 题主对现有的可解释方法进行了调研:大体分为局部可解释与全局可解释两大类方法,局部可解释针对具体的输入样本得出类似属性重要性的度量,比如传统的permu…