15 de fev. de 2023 · Richard Wesley Hamming (Chicago, 11 de fevereiro de 1915 — Monterey, 7 de janeiro de 1998) foi um matemático estadunidense. Suas contribuições na ciência da computação incluem o Código de Hamming (que faz uso da Matriz de Hamming ), a Janela Hamming (descrita na seção 5.8 de seu livro Digital Filters ), Números Hamming ...
- 7 de janeiro de 1998 (82 anos), Monterey
- 11 de fevereiro de 1915, Chicago
- estadunidense
- Prêmio Turing (1968), Prêmio Emanuel R. Piore IEEE (1979), Medalha Richard W. Hamming (1988)
8 de mar. de 1999 · Richard Wesley Ham-ming, mathematician, pi-oneer computer scien-tist, and professor, died of a heart attack on Jan-uary 7, 1998, in Mon-terey, California, at the age of eighty-two. His re-search career began at Bell Laboratories in the 1940s, in the early days of electronic computers, and included the inven-tion of the Hamming error-correcting ...
- 181KB
- 6
Há 3 dias · Richard Wesley Hamming fue un matemático estadounidense que trabajó en temas relacionados con la informática y las telecomunicaciones. Sus principales contribuciones a la ciencia han sido el código Hamming, la ventana Hamming y la distancia de Hamming.
- Richard Wesley Hamming
- 7 de enero de 1998 (82 años), Monterrey, California Estados Unidos
found: New York times, Jan. 11, 1998: obituaries (Richard Hamming, 82, dies; pioneer in digital technology; d. Jan. 7, 1998 at a hospital in Monterey, Calif.)
Richard Wesley Hamming. Matemático estadounidense creador de un código detector de errores que lleva su nombre, y de gran importancia en sistemas de telecomunicación e informática. Inventó la ventana de Hamming, de gran importancia en el tratamiento digital de señales.
Há 3 dias · The IEEE Richard W. Hamming Medal, established in 1986, is named in honor of Dr. Richard W. Hamming, who had a central role in the development of computer and computing science, and whose many significant contributions in the area of information science include his error-correcting codes.
18 de mar. de 2023 · Hamming distance is used in neural networks to describe the number of pixels that differ in a comparison of two pictures. In particular, if one picture is the original aim and the other picture is an attempt to restore that original picture from a blurred or noisy version of it.